

Lesson 6. Decibels

Sounds that are more intense than about 1 watt per square meter are painful to the human ear. On the other hand, *threshold intensity*, or the least intense sound that can be heard, is about 10^{-12} (0.0000000000001) watts per square meter. Since this number is ridiculous, we use *logarithms*. A *logarithm* is essentially the reverse of an exponent. The value of a logarithm is the **power** x to which you must raise the **base** b to obtain the **argument** a.

 $b^{x} = a$

$$log_b a = x$$

$$10^3 = 1000$$

$$log_{10} 1000 = 3$$

$$log_{20} 32 = 5$$

The logarithmic scale used for measuring sound intensity is the **decibel (dB) scale**, which uses a base of 10. This means a 10-dB increase means the sound intensity is 10 times more, a 20-dB increase means the sound intensity is 100 times more, and a 30-dB increase means the sound intensity is 1000 times more, and so forth.

Decibels are expressed by the following equation, where **sound level** L is a logarithm of sound intensity I divided by the threshold of hearing I_0 :

$$L = 10 \log \frac{I}{I_0}$$

This scale puts the threshold of hearing at a very reasonable 0, and the threshold of pain at 140, making decibels much easier to work with than sound intensity expressed in acoustic watts.

Threshold of hearing (O dB
ррр	40 dB
p	60 dB
f	80 dB
fff	100 dB
Threshold of pain	120 dB